Search

Trace CO2 capture by an ultramicroporous physisorbent with low water affinity - Science Advances

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/11/eaax9171/DC1

Supplementary Materials and Methods

Supplementary Text

Fig. S1. PXRD of SIFSIX-18-Ni.

Fig. S2. Variable temperature PXRD of SIFSIX-18-Ni.

Fig. S3. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-α, SIFSIX-18-Ni-β, and SIFSIX-18-Ni-γ with their calculated patterns and related polymorphs (24) (all recorded at 298 K).

Fig. S4. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-β, SIFSIX-18-Ni-β (activated, before dosing CO2), and SIFSIX-18-Ni-β (dosed with 1 bar CO2 at 303 K) with the calculated pattern of SIFSIX-18-Ni-β.

Fig. S5. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-α, SIFSIX-18-Ni-β, and SIFSIX-18-Ni-β (activated, before dosing H2O).

Fig. S6. Particle size distribution around the mean diameter (~13.94 μm) range of SIFSIX-18-Ni-β.

Fig. S7. Thermogravimetric analysis profiles of SIFSIX-18-Ni.

Fig. S8. CO2 sorption isotherms for SIFSIX-18-Ni-β; inset: low pressure range until 0.01 bar.

Fig. S9. Low-temperature CO2, N2, and O2 sorption isotherms for SIFSIX-18-Ni-β.

Fig. S10. CO2 and N2 sorption isotherms for SIFSIX-18-Ni-β.

Fig. S11. CO2 and O2 sorption isotherms for SIFSIX-18-Ni-β.

Fig. S12. CO2 sorption isotherms at 298 K for SIFSIX-18-Ni-α (only subjected to evacuation after MeOH washing of precursor, i.e., no heating), SIFSIX-18-Ni-β, and SIFSIX-18-Ni-γ.

Fig. S13. CO2 and N2 sorption isotherms for Mg-MOF-74.

Fig. S14. CO2 and N2 sorption isotherms for Zeolite 13X.

Fig. S15. CO2 and N2 sorption isotherms for SIFSIX-3-Ni.

Fig. S16. CO2 and N2 sorption isotherms for NbOFFIVE-1-Ni.

Fig. S17. CO2 and N2 sorption isotherms for TIFSIX-3-Ni.

Fig. S18. CO2 and N2 sorption isotherms for ZIF-8.

Fig. S19. Fitting of the isotherm data for SIFSIX-18-Ni-β to the virial equation.

Fig. S20. Fitting of the isotherm data for ZIF-8 to the virial equation.

Fig. S21. H2O sorption isotherms for SIFSIX-18-Ni-β compared with other HUMs (all recorded at 298 K).

Fig. S22. Sorption isotherms (298 K) for CO2 and H2O for SIFSIX-18-Ni-β compared with other HUMs; pressure range until 0.03 bar i.e. saturation pressure of H2O at 298 K.

Fig. S23. H2O sorption isotherms (298 K) of SIFSIX-18-Ni-β for vacuum DVS and intrinsic DVS experiments.

Fig. S24. H2O sorption isotherms of SIFSIX-18-Ni-β recorded at different temperatures by intrinsic DVS experiments.

Fig. S25. Humidity-dependent CO2/H2O selectivities (SCW) for SIFSIX-18-Ni-β at 298 K.

Fig. S26. CO2/H2O selectivities (SCW) for SIFSIX-18-Ni-β under different CO2 concentrations at 298 K.

Fig. S27. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-b under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S28. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-b under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S29. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S30. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S31. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for Zeolite 13X under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S32. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for Zeolite 13X under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S33. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S34. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S35. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for TIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S36. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for TIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

Fig. S37. 1000 ppm CO2/N2 (v/v = 0.1/99.9%) breakthrough profiles for ZIF-8 under dry condition, flow rate = 20 cm3 min−1.

Fig. S38. 3000 ppm CO2/N2 (v/v = 0.3/99.7%) breakthrough profiles for ZIF-8 under dry condition, flow rate = 20 cm3 min−1.

Fig. S39. 0.5/99.5 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-β and NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 10 cm3 min−1.

Fig. S40. 1/99 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-β and NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 10 cm3 min−1.

Fig. S41. Temperature-programmed desorption plot of DAC of CO2 experiment for SIFSIX-18-Ni-β.

Fig. S42. PXRD profiles for SIFSIX-18-Ni before and after accelerated stability test.

Fig. S43. BET surface areas as obtained from 77 K N2 adsorption isotherms for SIFSIX-18-Ni and other adsorbents, after accelerated stability test.

Fig. S44. CO2 adsorption isotherms (298 K) for SIFSIX-18-Ni after accelerated stability test.

Fig. S45. IAST selectivity comparison for benchmark physisorbents at CO2 (500 ppm): N2 binary mixture; results for SIFSIX-18-Ni-β not included as partial sieving effect is observed.

Fig. S46. IAST selectivities found in SIFSIX-18-Ni-β for CO2/O2 binary mixtures with varying CO2 concentrations.

Fig. S47. FTIR spectra of SIFSIX-18-Ni: as-synthesized, activated (β), after CO2 sorption, after H2O sorption, and after 1-hour CO2 dosing at 1 bar.

Fig. S48. 0.1/99.9 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

Fig. S49. 0.3/99.7 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

Fig. S50. 0.5/99.5 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

Fig. S51. 1/99 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

Fig. S52. CO2 adsorption-desorption recyclability over 100 cycles for SIFSIX-18-Ni-β (1.0 bar CO2; desorption at 348 K): for each cycle, 60 min of isothermal (303 K) gravimetric CO2 uptake recorded on the activated sample.

Fig. S53. Comparison of gravimetric C-capture kinetics in SIFSIX-18-Ni-β and TEPA-SBA-15 under dry conditions.

Fig. S54. Comparison of gravimetric C-capture kinetics in SIFSIX-18-Ni-β and TEPA-SBA-15 under wet conditions.

Fig. S55. Diffractograms for the Le Bail refinement of SIFSIX-18-Ni-α.

Fig. S56. Diffractograms for the Rietveld refinement of SIFSIX-18-Ni-β.

Fig. S57. Equilibrated structure of CO2 molecules residing in the cavity of SIFSIX-18-Ni-β corresponding to a loading of 2 CO2 per formula unit.

Fig. S58. Scheme of the coupled gas mixing system, TGA-based gas uptake analysis, and breakthrough separation analysis unit.

Table S1. Calculated SCW at 74% RH.

Table S2. Fitting parameters for SIFSIX-18-Ni-β.

Table S3. Fitting parameters for ZIF-8.

Table S4. Dynamic breakthrough experiment details of CO2/N2 at 298 K and 1 bar.

Table S5. Crystallographic data for SIFSIX-18-Ni.

References (4145)

Let's block ads! (Why?)



"water" - Google News
November 30, 2019 at 01:55AM
https://ift.tt/35OPgLf

Trace CO2 capture by an ultramicroporous physisorbent with low water affinity - Science Advances
"water" - Google News
https://ift.tt/2XpCTT3
Shoes Man Tutorial
Pos News Update
Meme Update
Korean Entertainment News
Japan News Update

Bagikan Berita Ini

0 Response to "Trace CO2 capture by an ultramicroporous physisorbent with low water affinity - Science Advances"

Post a Comment

Powered by Blogger.